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Part I: Local linearization and small divisors
Let K be a complete valued non-Archimedean field. Given λ ∈ K
s.t. λ 6= 0 but not a root of unity, consider the germ of power series

Fλ(K ) = {f (x) = λx + a2x2 + a3x3 + · · · ∈ K [[x ]]}

with multiplier λ = f ′(0) and f convergent on the open disc Drf (0)
of radius rf = 1/ lim sup |ai |1/i .

Definition (Linearizability)
A power series f ∈ Fλ(K ) is said to be linearizable if there exist a
convergent power series solution

g(x) = x + b2x2 + b3x3 + · · · ∈ K [[x ]]

to the Schröder functional equation

g(f (x)) = λg(x). (1)



Example (Lubin:1994, Arrowsmith&Vivaldi:1994)
Let K = Cp, and λ ∈ Zp \ {0} not a root of unity. Then

fλ(x) = (1 + x)λ − 1 = λx +
∞∑
i=2

(
λ

i

)
x i ,

is linearizable with conjugacy function

g(x) = log(1 + x) =
∞∑

n=1

(−1)n+1 x
n

n
; |x | < 1

with inverse

g−1(x) = exp(x) =
∞∑

n=1

xn

n!
; |x | < p−1/(p−1)



Herman&Yoccoz 1981: there always exist a formal solution
Given f (x) = λx + a2x2 + a3x3 + . . . , λ 6= 0 but not a root of
unity, then the ansatz of

g(x) = x + b2x2 + b3x3 + . . . ,

in the Schröder functional eq. g(f (x)) = λg(x) gives a recursive
formula for coefficients of g :

bk =
1

λ(1− λk−1)

k−1∑
l=1

bl (
∑ l !

α1! · ... · αk !
aα1
1 · ... · a

αk
k ) (2)

where α1, α2, . . . , αk are nonnegative integer solutions of
α1 + ...+ αk = l ,
α1 + 2α2...+ kαk = k ,
1 ≤ l ≤ k − 1.

(3)

Small divisor problem: if λ is ‘close to’ a root of unity



Remark (Constructions from local arithmetic geometry)

1. As described in Lubin:1994, in the p-adic case the conjugacy g
can be obtained from an iterative logarithm

g = Lf = lim
n→∞

f ◦n/λn, if 0 < |λ| < 1,

f∗ = lim
n→∞

f ◦p
n − id
pn , if |λ| = 1

respectively. In the latter case, formally g = exp(
∫
log(λ)/f∗).

2. Rivera-Letelier:2000 use similar constructions of Lf and f∗ in
his work on the classification of Fatou components for rational
maps over K = P1(Cp).

3. For K = Fp((T )) there no such general constructions for all
f ∈ Fλ(K ) but for Drinfeld Modules (see e.g Goss:1996) of a
subclass of such f , for which the multiplier |λ| 6= 0, 1 and for
which all non-linear monomials are of degree divisible by p.
The earliest examples being the so called Carlitz polynomials
obtained by Carlitz in 1935.



Complex field case
Cremer 1938: g diverges for every λ such that

lim sup
(
−1
k
log
(

inf
1≤n≤k−1

|1− λn|
))

= +∞. (4)

Siegel 1942: g converges if

|1− λn| ≥ Cn−β for some real numbers C , β > 0, (5)

Brjuno 1971: g converges if

−
∞∑

k=0

2−k log
(

inf
1≤n≤2k+1−1

|1− λn|
)
< +∞. (6)

Yoccoz 1988: For quadratic polynomials, g converges if and
only if λ satisfies the Brjuno condition (6).

See e.g. Milnor:2000 or Herman:1986 for a review.



Non-Archimedean Siegel Theorem - Herman&Yoccoz:1981

The conjugacy g converges if λ satisfies the Siegel condition

|1− λn| ≥ Cn−β for some real numbers C , β > 0. (7)

1. If char K = 0
I dim one every λ not a root of unity satisfy (7)
I dim two there exist λ s.t. (7) is broken and g diverges.
I multi-dim p-adic case Viegue:2007, Okuyama:2010.

2. If char K = p > 0, and |1− λm| < 1 for some m > 0. Then λ
does not satisfy (7) nor the Brjuno condition (6). In fact, if
|1− λm| < 1, then |1− λmpj | = |1− λm|pj

.



Small divisors in fields of prime characterstics and Herman’s
conjecture, int. congress of mathematical physics 1986

For a locally compact Ultrametric field K , the conjugacy ‘usually’
diverges even for polynomials of one variable.



Results from papers concerning Herman’s conjecture
L:2004,2010 and L&Rivera-Letelier:2011.

Let char K = p > 0 and λ ∈ K , not a root of unity be such that
|λ| = 1 and |1− λ| < 1. E.g. if K = Fp((T )), then

λ = 1 +O(T )

For such λ we study the germ of power series

f (x) = λx + a2x2 + a3x4 + · · · ∈ K [[x ]].

E.g. K = Fp((T )) and

f (x) = (1 + T )x + x2.

Note |1− λpn | = |T |pn → 0 ‘fast’ as n→∞.



Hence, for f (x) = λx + a2x2 it ‘seems’ from formal solution

bk =
1

λ(1− λk−1)

k−1∑
l=1

bl (
∑ l !

α1! · α2!
λα1 · aαk

2 ) (8)

where 
α1 + α2 = l ,
α1 + 2α2 = k ,
1 ≤ l ≤ k − 1.

(9)

we could have small denominators in bpN+1

pN−1∏
i=1

|1− λip| = |1− λ|p
N(1+ p−1

p (N−1))

so that lim sup |bpN+1|1/(p
N+1) =∞ and g(x) =

∑
bkxk diverges.



Theorem (L)
Quadratic polynomials of the form f (x) = λx + a2x2 ∈ K [x ], where
|1− λ| < 1 are analytically linearizable at the origin if and only if
char K = 2.
In fact, for charK = 2 all bad terms with small denominators cancel
and we found an explicit formula for the conjugacy

g(x) = x +
∞∑
j=1

a
2j−1
2−1
2 x2j

λj(1− λ2j−1)(1− λ2j−1−1) . . . (1− λ2−1)

whereas for charK > 2 we proved

|bpN+1| =
|a2|p

N |λ− 1|pN−1

|λ− 1|p
N(N p−1

p +1)
.



Positive characteritic case
(L:2004,L:2010,L&Rivera-Letelier:2011)

Let charK = p, and λ ∈ K not a root of unity, be s.t. |1− λ| < 1.

For future reference below, put γi = |1− λ|
p−i
p−2 .

Convergence Divergence

λx + a2x2, p = 2 λx + a2x2, p > 3

λx + (λ− λ2)x2 + . . . λx + a2x2 + . . . , |ai | < |1− λ||a2|

λx +
∑

p|i aix i λx + ap+1xp+1

λx(1 + x + x2 + . . . ) 6) λx +
∑

aix i , |ap+1| = 1,|ai | < γi , i ∈ [2, p]

Remark
6) says that there is an open set of non-linearizable power series



Concluding remarks linearization in positive characteristic

Let K be locally compact of positive characteristic p and let λ ∈ K
with |λ| = 1. How ‘likey’ is it that

f (x) = λx + a2x2 + · · · ∈ K [[x ]]

is linearizable at the origin?
1. The fact that we have an open set of non-linearizable power

series indicate that with high probability f is non-linearizable.
2. For polynomials, it seems they are only linearizable only if their

non-linear monomials are of degree divisible by p.



Part II: Geometry of linearization discs
Definition (Semi-disc)
The semi-disc will be referred to as the maximal disc D about the
fixed point at the origin such that the semi-conjugacy
g(f (x)) = λg(x) holds for all x ∈ D.

Definition (Linearization disc)
The linearization-disc will be referred to as the maximal disc ∆
such that the full conjugacy g ◦ f ◦ g−1(x) = λx , holds for all
x ∈ ∆.

Remark

1. ∆ \ {0} cannot contain any periodic point, nor any root of
its iterates since g ◦ f n ◦ g−1(x) = λnx.

2. The semi-disc D may contain other periodic points or roots
of iterates.

3. Ergodic behavior on ∆ is discussed in (L:2009).



Theorem (Weierstrass Preparation Theorem (WPT))
Let K be algebraically closed. Let f (x) =

∑∞
i=1 aix i be a nonzero

power series over K which converges on a rational closed disc
U = DR(0), and let 0 < r ≤ R. Then

s = max{|ai |r i : i ≥ 1},
d = max{i ≥ 1 : |ai |r i = s}, and
d ′ = min{i ≥ 1 : |ai |r i = s}

are all attained and finite. Furthermore,
a. f maps Dr (0) onto Ds(0) exactly d-to-1 (counting multiplicity).
b. f maps Dr (0) onto Ds(0) exactly d ′-to-1 (counting multiplicity).

This is a generalization (Benedetto:2003) of the WPT.
We will refer to deg(f ,Dr (0)) = d and deg(f ,Dr (0)) = d ′ as the
Weierstrass degree of f on the corresponding discs.



Example Lubin:1994, Arrowsmith&Vivaldi:1994
Let K = Cp, and λ ∈ N \ {0}. Then

fλ(x) = (1 + x)λ − 1 = λx +
λ∑

i=2

(
λ

i

)
x i ,

and g(x) = log(1 + x) and g−1(x) = exp(x).

1. semi-disc D = D1(0) linearization disc ∆ = Dp−1/(p−1)(0)

2. For n ≥ 1, put
rn = p−1/pn−1(p−1).

3. (indifferent) e.g. λ = p + 1;
fλ : D1(0)→ D1(0) one-to-one and isometric.
fλ has pn − 1 periodic points on the sphere Srn(0).

4. (attracting) e.g. λ = p;
fλ has pn − 1 roots of iterates on the sphere Srn(0).



Comments on Fatou components at indifferent fixed points

Suppose a linearizable f (x) = λx + . . . , |λ| = 1 is the power series
of some rational map R. Let S be the corresponding Siegel disc,
that is the corresponding fixed analytic component of the Fatou set.

1. For K = C, R is linear throughout S .
2. For K = Cp, the linearization disc ∆ ⊂ S .
3. Indeed, For K = Cp, the Siegel disc will contain infinitely

many periodic points and the dynamics is quasi-periodic, as
proven by Rivera-Letelier:2000.



Hyperbolic case - general K (joint work with Zieve)
Let K be a complete non-Archimedean field. For λ ∈ K s.t.
0 < |λ| < 1, we consider the two-parameter family

Fλ,a(K ) = {λx + a2x2 + a3x3 + · · · ∈ K [[x ]] : a = sup
i≥2
|ai |1/(i−1)}.

Theorem (L&Zieve:2010 Attracting fixed point)
If f ∈ Fλ,a(K ), where 0 < |λ| < 1. Then, the semi-disc
D ⊇ D1/a(0) and the linearization disc ∆ ⊇ Dλ/a(0).

Corollary
f ∈ Fλ,a(K ) is attracting in D1/a(0) and strictly attracting (no
preperiodic points except x = 0) on Dλ/a(0).

Example

1. f (x) = λx + a2x2, then a = |a2|, D = D1/a(0), ∆ = Dλ/a(0).
2. same for f (x) = λx + x2 + x3 + . . .

3. f (x) = λx(1+ x + x2 + . . . ), then D = ∆ = D1/a(0) = D1(0).

Remark (Repelling case, see L&Zieve:2010, Bezivin:2001)



Geometry of linearization discs at indifferent fixed points

Given λ ∈ K s.t. |λ| = 1 but not a root of unity, and the
two-parameter family

Fλ,a(K ) = {λx + a2x2 + a3x3 + · · · ∈ K [[x ]] : a = sup
i≥2
|ai |1/(i−1)},

with multiplier λ = f ′(0).

Lemma
The radius of the linearization disc rad(∆) ≤ 1/a. On ∆ we have
that f ∈ Fλ,a(K ) is ergodic if and only if the multiplier map
Tλ : x → λx is. The same is true for transitivity and minimality.

Theorem (Periodic points on the boundary, L:2010)
Suppose that ∆ is rational open, and that the radius of the
corresponding semi-disc rad(D) > rad(∆), then f has an
indifferent periodic point on the boundary of ∆.



Theorem (L:2010, char K>0 explicit solution)
Let char K = p > 0 and f ∈ Fλ,a(K ) be polynomial of the form
f (x) = λx + apxp, ap 6= 0. Then g(x) = x +

∑∞
j=1 bpj xpj

, where

bpj =
a

pj−1
p−1
p

λj(1− λpj−1)(1− λpj−1−1) . . . (1− λp−1)
. (10)

rad(D) = ρp = 1/a where a = |ap|1/(p−1).
rad(∆) = σp where

σp =
pm′−1
√
|1− λm|
a

, where m′ = 1 if m = 1, and otherwise

m′ = min{n ∈ Z : n ≥ 1, pn ≡ 1 mod m}.

Moreover in the algebraic closure K̂ we have deg(g ,Dσp (0)) = pm′ .
Furthermore, f has an indifferent periodic point of period κ ≤ pm′

on the sphere Sσp (0) in K̂ , with multiplier λκ.



Example

f (x) = λx + xp and |1− λ| < 1 so that m = m′ = 1, then

g(x) = x +
∞∑
j=1

xpj

λj(1− λpj−1)(1− λpj−1−1) . . . (1− λp−1)
.

For n ≥ 1, put
rn = |1− λ|1/pn−1(p−1)

The semi-disc D = D1(0) and the linearization disc ∆ = Dr1(0).

The Weierstrass degree
deg(g ,Drn(0)) = pn

deg(g ,Drn(0)) = pn−1.

f has a periodic point on each sphere Srn(0) in the alg. closure K̂ .



Estimates of linearization discs in pos. characteristics
Let λ ∈ K , not a root of unity, be such that the integer
m = min{n ∈ Z : n ≥ 1, |1− λn| < 1}, exists and let
Fλ,a,p(K ) = {λx+

∑
p|i apx i +· · · ∈ K [[x ]] : a = supi≥2 |ai |1/(i−1)}.

Theorem (L:2010 General estimate - sometimes optimal)
Given f ∈ Fλ,a,p(K ), the semi-disc D ⊇ Dρ(0) and lin. disc
∆ ⊇ Dσ(0) where

ρ =
|1− λm|

1
mp

a
, σ =

|1− λm|
1

p−1

a
.

Suppose a = |ap|1/(p−1). Then, ∆ = Dσ(0) and deg(g ,Dσ(0)) = p
and f has an indifferent periodic point in K̂ on the sphere Sσ(0).

Example
λ = 1 + T ⇒ m = 1. Then, for

f (x) = (1 + T )x + xp +
∑
n≥2

xnp ∆ = D|T |1/(p−1)(0).



Estimates of indifferent linearization discs in characteristic
zero

P−adic case

Ben-Menahem:1988
ThiranVerstegenWeyers:1989
Arrowsmith&Vivaldi:1994
Pettigrew&Roberts&Vivaldi:2001
Khrennikov:2001
Zieve:1996
Viegue:2007 (multi-dimensional case)
L:2009

Function field case

L:2009



Indifferent linearization discs in Cp
Given λ, not a root of unity, and a real number a, we define the
family

Fλ,a(Cp) = {λx +
∑

aix i ∈ Cp[[x ]] : a = sup
i≥2
|ai |1/(i−1)}

Theorem (General estimate)
Let f ∈ Fλ,a(Cp). Then, the linearization disc ∆f (0) ⊇ Dσ(0)
where

σ = σ(λ, a) := a−1R(s + 1)
1
m |1−λm|

1
m (1+ p−1

p s)
(
|α− λm|
|1− λm|

)1/mps

.

(11)

Theorem (Exact disc quadratic case)
If f is a quadratic polynomial with λ ∈ {z : p−1 < |1− z | < 1},
then ∆f = Dτ (0), where τ = |1− λ|−1/pσ(λ, a). The same is true
for power series with a sufficiently large quadratic term.



Ergodicity

Lemma
The radius of the linearization disc rad(∆) ≤ 1/a. On ∆ we have
that f ∈ Fλ,a(K ) is ergodic if and only if the multiplier map
Tλ : x → λx is. The same is true for transitivity and minimality.

Theorem (Ergodicity on spheres about fixed points in
non-Archimedean dynamics (L))
Let K be a complete Ultrametric field and let f ∈ Fλ,a(K ) be
holomorphic on a disc U in K. Suppose that f has a linearization
disc ∆ ⊂ U and S ⊂ ∆ is a sphere about the corresponding fixed
point. Then

f : S → S is ergodic if and only if K is isomorphic to Qp and
the multiplier is a generator of the group of units (Z/p2Z)∗.

Furthermore, if K = Qp and λ is a generator of the group of units
(Z/p2Z)∗, then the radius of ∆ is 1/a (considered as a disc in Qp).



Concluding remarks concerning linearization discs

1. For linearizable power series at indifferent fixed points in
positive characteristic, our examples indicate that it is common
that the semi-disc D is strictly larger than the linearization disc
∆, forcing f to have a periodic point on the boundary of ∆.

2. How common is it that the semi-disc is strictly larger than the
linearization disc at indifferent fixed points in the p-adic case?

3. So far we know it happens for the family f (x) = (1 + x)λ − 1.
Another candidate is the quadratic family
λx + a2x2 + (‘suff. small terms’) with multiplier
λ ∈ {z : p−1 < |1− z | < 1} for which we found the exact size
of ∆.

4. What can we say about the dynamics of non-linearizable series
in positive characteristic? (recent/present joint work with
Rivera-Letelier)

5. Are there normal forms of non-linearizable power series?



D. K. Arrowsmith and F. Vivaldi.
Geometry of p-adic Siegel discs.
Physica D, 71:222–236, 1994.

S. Ben-Menahem.
p-adic iterations.
Preprint, TAUP 1627–88, Tel Aviv University, 1988.

R. Benedetto.
Non-Archimedean holomorphic maps and the Ahlfors Islands
theorem.
Amer. J. Math., 125(3):581–622, 2003.

J-P. Bézivin.
Sur les points périodiques des applications rationnelles en
dynamique ultramétrique.
Acta Arith., 100(1):63–74, 2001.

S. Bosch, U. Güntzer, and R. Remmert.
Non-Archimedean analysis: A systematic approach to rigid
analytic geometry.



Springer-Verlag, Berlin, 1984.

L. Carlitz.
On certain functions connected with polynomials in a Galois
field.
Duke Math. J., 1:137–168, 1935.

J. Fresnel and M. van der Put.
Géométrie analytique rigide et applications.
Birkhäuser, Boston, 1981.

D. Goss.
Basic structures of function field arithmetic.
Springer-Verlag, Berlin, 1996.

M. Herman and J.-C. Yoccoz.
Generalizations of some theorems of small divisors to non
archimedean fields.
In J. Palis Jr, editor, Geometric Dynamics, volume 1007 of
Lecture Notes in Mathematics, pages 408–447, Berlin
Heidelberg New York Tokyo, 1983. Springer-Verlag.
Proceedings, Rio de Janeiro 1981.



M. Herman.
Recent results and open questions on Siegel’s linearization
theorem of complex analytic diffeomorphisms of Cn near a
fixed point.
In Proc. VIII-th International Congress on Mathematical
Physics 1986, pages 138–184. World Scientific, 1987.

A. Yu. Khrennikov.
Small denominators in complex p-adic dynamics.
Indag. Mathem., 12(2):177–188, 2001.

K.-O. Lindahl.
Estimates of linearization discs in p-adic dynamics with
application to ergodicity.
http://arxiv.org/abs/0910.3312.

K.-O. Lindahl and M. Zieve.
On hyperbolic fixed points in Ultrametric Dynamics.
p-Adic Numbers, Ultrametric Analysis and Applications,
2(3):232–240, 2010.



K.-O. Lindahl.
On Siegel’s linearization theorem for fields of prime
characteristic.
Nonlinearity, 17(3):745–763, 2004.

K.-O. Lindahl.
Linearization in Ultrametric Dynamics in Fields of
Characteristic Zero – Equal Characteristic Case.
p-Adic Numbers, Ultrametric Analysis and Applications,
1(4):307–316, 2009.

K.-O. Lindahl.
Divergence and convergence of conjugacies in
non-Archimedean dynamics.
In Advances in P-Adic and Non-Archimedean Analysis, volume
508 of Contemp. Math., pages 89–109, Providence, RI, 2010.
Amer. Math. Soc.

J. Lubin.
Non-archimedean dynamical systems.
Compos. Math., 94:321–346, 1994.



J. Milnor.
Dynamics in One Complex Variable.
Vieweg, Braunschweig, 2nd edition, 2000.

Y. Okuyama.
Nonlinearity of morphisms in non-archimedean and complex
dynamics.
Michigan Math. J., 59(3):505–515, 2010.

J. Pettigrew, J. A. G. Roberts, and F. Vivaldi.
Complexity of regular invertible p-adic motions.
Chaos, 11:849–857, 2001.

J. Rivera-Letelier.
Dynamique des functionsrationelles sur des corps locaux.
PhD thesis, Université de Paris-Sud, Orsay, 2000.

E. Thiran, D. Verstegen, and J. Weyers.
p-adic dynamics.
J. Statist. Phys., 54:893–913, 1989.

D. Viegue.



Problèmes de linéarisation dans des familles de germes
analytiques.
PhD thesis, Université D’Orléans, 2007.

M. E. Zieve.
Cycles of polynomial mappings.
PhD thesis, University of California at Berkeley, 1996.


	Part I: Local linearization and small divisors
	Statement of the problem
	Complex field case
	Herman's Conjecture for fields of positive characteristic
	Concluding remarks

	Part II: Geometry of linearization discs
	Definitions and general facts
	Hyperbolic case
	Indifferent case
	Concluding remarks


